Metamath Proof Explorer


Theorem 0clwlkv

Description: Any vertex (more precisely, a pair of an empty set (of edges) and a singleton function to this vertex) determines a closed walk of length 0. (Contributed by AV, 11-Feb-2022)

Ref Expression
Hypothesis 0clwlk.v V=VtxG
Assertion 0clwlkv XVF=P:0XFClWalksGP

Proof

Step Hyp Ref Expression
1 0clwlk.v V=VtxG
2 fz0sn 00=0
3 2 eqcomi 0=00
4 3 feq2i P:0XP:00X
5 4 biimpi P:0XP:00X
6 5 3ad2ant3 XVF=P:0XP:00X
7 snssi XVXV
8 7 3ad2ant1 XVF=P:0XXV
9 6 8 fssd XVF=P:0XP:00V
10 breq1 F=FClWalksGPClWalksGP
11 10 3ad2ant2 XVF=P:0XFClWalksGPClWalksGP
12 1 1vgrex XVGV
13 1 0clwlk GVClWalksGPP:00V
14 12 13 syl XVClWalksGPP:00V
15 14 3ad2ant1 XVF=P:0XClWalksGPP:00V
16 11 15 bitrd XVF=P:0XFClWalksGPP:00V
17 9 16 mpbird XVF=P:0XFClWalksGP