Metamath Proof Explorer


Theorem 0lt1sr

Description: 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion 0lt1sr 0𝑹<𝑹1𝑹

Proof

Step Hyp Ref Expression
1 1pr 1𝑷𝑷
2 addclpr 1𝑷𝑷1𝑷𝑷1𝑷+𝑷1𝑷𝑷
3 1 1 2 mp2an 1𝑷+𝑷1𝑷𝑷
4 ltaddpr 1𝑷+𝑷1𝑷𝑷1𝑷𝑷1𝑷+𝑷1𝑷<𝑷1𝑷+𝑷1𝑷+𝑷1𝑷
5 3 1 4 mp2an 1𝑷+𝑷1𝑷<𝑷1𝑷+𝑷1𝑷+𝑷1𝑷
6 addcompr 1𝑷+𝑷1𝑷+𝑷1𝑷=1𝑷+𝑷1𝑷+𝑷1𝑷
7 5 6 breqtrri 1𝑷+𝑷1𝑷<𝑷1𝑷+𝑷1𝑷+𝑷1𝑷
8 ltsrpr 1𝑷1𝑷~𝑹<𝑹1𝑷+𝑷1𝑷1𝑷~𝑹1𝑷+𝑷1𝑷<𝑷1𝑷+𝑷1𝑷+𝑷1𝑷
9 7 8 mpbir 1𝑷1𝑷~𝑹<𝑹1𝑷+𝑷1𝑷1𝑷~𝑹
10 df-0r 0𝑹=1𝑷1𝑷~𝑹
11 df-1r 1𝑹=1𝑷+𝑷1𝑷1𝑷~𝑹
12 9 10 11 3brtr4i 0𝑹<𝑹1𝑹