Metamath Proof Explorer


Theorem 0ltat

Description: An atom is greater than zero. (Contributed by NM, 4-Jul-2012)

Ref Expression
Hypotheses 0ltat.z 0˙=0.K
0ltat.s <˙=<K
0ltat.a A=AtomsK
Assertion 0ltat KOPPA0˙<˙P

Proof

Step Hyp Ref Expression
1 0ltat.z 0˙=0.K
2 0ltat.s <˙=<K
3 0ltat.a A=AtomsK
4 simpl KOPPAKOP
5 eqid BaseK=BaseK
6 5 1 op0cl KOP0˙BaseK
7 6 adantr KOPPA0˙BaseK
8 5 3 atbase PAPBaseK
9 8 adantl KOPPAPBaseK
10 eqid K=K
11 1 10 3 atcvr0 KOPPA0˙KP
12 5 2 10 cvrlt KOP0˙BaseKPBaseK0˙KP0˙<˙P
13 4 7 9 11 12 syl31anc KOPPA0˙<˙P