Metamath Proof Explorer


Theorem 0nelxp

Description: The empty set is not a member of a Cartesian product. (Contributed by NM, 2-May-1996) (Revised by Mario Carneiro, 26-Apr-2015) (Proof shortened by JJ, 13-Aug-2021)

Ref Expression
Assertion 0nelxp ¬A×B

Proof

Step Hyp Ref Expression
1 vex xV
2 vex yV
3 1 2 opnzi xy
4 3 nesymi ¬=xy
5 4 intnanr ¬=xyxAyB
6 5 nex ¬y=xyxAyB
7 6 nex ¬xy=xyxAyB
8 elxp A×Bxy=xyxAyB
9 7 8 mtbir ¬A×B