Metamath Proof Explorer


Theorem 0ringbas

Description: The base set of a zero ring, a ring which is not a nonzero ring, is the singleton of the zero element. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses 0ringdif.b B=BaseR
0ringdif.0 0˙=0R
Assertion 0ringbas RRingNzRingB=0˙

Proof

Step Hyp Ref Expression
1 0ringdif.b B=BaseR
2 0ringdif.0 0˙=0R
3 1 2 0ringdif RRingNzRingRRingB=0˙
4 3 simprbi RRingNzRingB=0˙