Description: For any category C , the empty set is a subcategory subset of C . (Contributed by AV, 23-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | 0ssc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss | |
|
2 | 1 | a1i | |
3 | ral0 | |
|
4 | 3 | a1i | |
5 | f0 | |
|
6 | ffn | |
|
7 | 5 6 | ax-mp | |
8 | xp0 | |
|
9 | 8 | fneq2i | |
10 | 7 9 | mpbir | |
11 | 10 | a1i | |
12 | eqid | |
|
13 | eqid | |
|
14 | 12 13 | homffn | |
15 | 14 | a1i | |
16 | fvexd | |
|
17 | 11 15 16 | isssc | |
18 | 2 4 17 | mpbir2and | |