Metamath Proof Explorer


Theorem 0ssc

Description: For any category C , the empty set is a subcategory subset of C . (Contributed by AV, 23-Apr-2020)

Ref Expression
Assertion 0ssc CCatcatHom𝑓C

Proof

Step Hyp Ref Expression
1 0ss BaseC
2 1 a1i CCatBaseC
3 ral0 xyxyxHom𝑓Cy
4 3 a1i CCatxyxyxHom𝑓Cy
5 f0 :
6 ffn :Fn
7 5 6 ax-mp Fn
8 xp0 ×=
9 8 fneq2i Fn×Fn
10 7 9 mpbir Fn×
11 10 a1i CCatFn×
12 eqid Hom𝑓C=Hom𝑓C
13 eqid BaseC=BaseC
14 12 13 homffn Hom𝑓CFnBaseC×BaseC
15 14 a1i CCatHom𝑓CFnBaseC×BaseC
16 fvexd CCatBaseCV
17 11 15 16 isssc CCatcatHom𝑓CBaseCxyxyxHom𝑓Cy
18 2 4 17 mpbir2and CCatcatHom𝑓C