Metamath Proof Explorer


Theorem 0subcat

Description: For any category C , the empty set is a (full) subcategory of C , see example 4.3(1.a) in Adamek p. 48. (Contributed by AV, 23-Apr-2020)

Ref Expression
Assertion 0subcat CCatSubcatC

Proof

Step Hyp Ref Expression
1 0ssc CCatcatHom𝑓C
2 ral0 xIdCxxxyzfxygyzgxycompCzfxz
3 2 a1i CCatxIdCxxxyzfxygyzgxycompCzfxz
4 eqid Hom𝑓C=Hom𝑓C
5 eqid IdC=IdC
6 eqid compC=compC
7 id CCatCCat
8 f0 :
9 ffn :Fn
10 8 9 ax-mp Fn
11 0xp ×=
12 11 fneq2i Fn×Fn
13 10 12 mpbir Fn×
14 13 a1i CCatFn×
15 4 5 6 7 14 issubc2 CCatSubcatCcatHom𝑓CxIdCxxxyzfxygyzgxycompCzfxz
16 1 3 15 mpbir2and CCatSubcatC