Description: For any category C , the empty set is a (full) subcategory of C , see example 4.3(1.a) in Adamek p. 48. (Contributed by AV, 23-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | 0subcat | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ssc | |
|
2 | ral0 | |
|
3 | 2 | a1i | |
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | id | |
|
8 | f0 | |
|
9 | ffn | |
|
10 | 8 9 | ax-mp | |
11 | 0xp | |
|
12 | 11 | fneq2i | |
13 | 10 12 | mpbir | |
14 | 13 | a1i | |
15 | 4 5 6 7 14 | issubc2 | |
16 | 1 3 15 | mpbir2and | |