Step |
Hyp |
Ref |
Expression |
1 |
|
ssidd |
|
2 |
|
ssidd |
|
3 |
2
|
ralrimivva |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
4 5
|
homffn |
|
7 |
6
|
a1i |
|
8 |
|
fvexd |
|
9 |
7 7 8
|
isssc |
|
10 |
1 3 9
|
mpbir2and |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
simpl |
|
14 |
|
simpr |
|
15 |
5 11 12 13 14
|
catidcl |
|
16 |
4 5 11 14 14
|
homfval |
|
17 |
15 16
|
eleqtrrd |
|
18 |
|
eqid |
|
19 |
13
|
adantr |
|
20 |
19
|
adantr |
|
21 |
14
|
adantr |
|
22 |
21
|
adantr |
|
23 |
|
simpl |
|
24 |
23
|
adantl |
|
25 |
24
|
adantr |
|
26 |
|
simpr |
|
27 |
26
|
adantl |
|
28 |
27
|
adantr |
|
29 |
4 5 11 21 24
|
homfval |
|
30 |
29
|
eleq2d |
|
31 |
30
|
biimpcd |
|
32 |
31
|
adantr |
|
33 |
32
|
impcom |
|
34 |
4 5 11 24 27
|
homfval |
|
35 |
34
|
eleq2d |
|
36 |
35
|
biimpd |
|
37 |
36
|
adantld |
|
38 |
37
|
imp |
|
39 |
5 11 18 20 22 25 28 33 38
|
catcocl |
|
40 |
4 5 11 21 27
|
homfval |
|
41 |
40
|
adantr |
|
42 |
39 41
|
eleqtrrd |
|
43 |
42
|
ralrimivva |
|
44 |
43
|
ralrimivva |
|
45 |
17 44
|
jca |
|
46 |
45
|
ralrimiva |
|
47 |
|
id |
|
48 |
4 12 18 47 7
|
issubc2 |
|
49 |
10 46 48
|
mpbir2and |
|