Metamath Proof Explorer


Theorem 0wlkon

Description: A walk of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 2-Dec-2017) (Revised by AV, 3-Jan-2021) (Revised by AV, 23-Mar-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypothesis 0wlk.v V=VtxG
Assertion 0wlkon P:00VP0=NNWalksOnGNP

Proof

Step Hyp Ref Expression
1 0wlk.v V=VtxG
2 simpl P:00VP0=NP:00V
3 1 0wlkonlem1 P:00VP0=NNVNV
4 1 1vgrex NVGV
5 4 adantr NVNVGV
6 1 0wlk GVWalksGPP:00V
7 3 5 6 3syl P:00VP0=NWalksGPP:00V
8 2 7 mpbird P:00VP0=NWalksGP
9 simpr P:00VP0=NP0=N
10 hash0 =0
11 10 fveq2i P=P0
12 11 9 eqtrid P:00VP0=NP=N
13 0ex V
14 13 a1i P:00VP0=NV
15 1 0wlkonlem2 P:00VP0=NPV𝑝𝑚00
16 1 iswlkon NVNVVPV𝑝𝑚00NWalksOnGNPWalksGPP0=NP=N
17 3 14 15 16 syl12anc P:00VP0=NNWalksOnGNPWalksGPP0=NP=N
18 8 9 12 17 mpbir3and P:00VP0=NNWalksOnGNP