Metamath Proof Explorer


Theorem 1sdom

Description: A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom .) (Contributed by Mario Carneiro, 12-Jan-2013) Avoid ax-un . (Revised by BTernaryTau, 30-Dec-2024)

Ref Expression
Assertion 1sdom AV1𝑜AxAyA¬x=y

Proof

Step Hyp Ref Expression
1 1sdom2dom 1𝑜A2𝑜A
2 2dom 2𝑜AxAyA¬x=y
3 df-ne xy¬x=y
4 3 2rexbii xAyAxyxAyA¬x=y
5 rex2dom AVxAyAxy2𝑜A
6 4 5 sylan2br AVxAyA¬x=y2𝑜A
7 6 ex AVxAyA¬x=y2𝑜A
8 2 7 impbid2 AV2𝑜AxAyA¬x=y
9 1 8 bitrid AV1𝑜AxAyA¬x=y