Description: Strict dominance over 1 is the same as dominance over 2. (Contributed by BTernaryTau, 23-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | 1sdom2dom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom | |
|
2 | 1 | brrelex2i | |
3 | sdomdom | |
|
4 | 0sdom1dom | |
|
5 | 3 4 | sylibr | |
6 | 0sdomg | |
|
7 | 2 6 | syl | |
8 | 5 7 | mpbid | |
9 | n0snor2el | |
|
10 | 8 9 | syl | |
11 | sdomnen | |
|
12 | df1o2 | |
|
13 | 0ex | |
|
14 | vex | |
|
15 | en2sn | |
|
16 | 13 14 15 | mp2an | |
17 | 12 16 | eqbrtri | |
18 | breq2 | |
|
19 | 17 18 | mpbiri | |
20 | 19 | exlimiv | |
21 | 11 20 | nsyl | |
22 | 10 21 | olcnd | |
23 | rex2dom | |
|
24 | 2 22 23 | syl2anc | |
25 | snsspr1 | |
|
26 | df2o3 | |
|
27 | 25 12 26 | 3sstr4i | |
28 | domssl | |
|
29 | 27 28 | mpan | |
30 | snnen2o | |
|
31 | 13 | a1i | |
32 | 1oex | |
|
33 | 32 | a1i | |
34 | 1n0 | |
|
35 | 34 | nesymi | |
36 | 35 | a1i | |
37 | 31 33 36 | enpr2d | |
38 | 37 | mptru | |
39 | 26 38 | eqbrtri | |
40 | breq1 | |
|
41 | 39 40 | mpbii | |
42 | 30 41 | mto | |
43 | 42 | nex | |
44 | 2on0 | |
|
45 | f1cdmsn | |
|
46 | 44 45 | mpan2 | |
47 | 43 46 | mto | |
48 | 47 | nex | |
49 | brdomi | |
|
50 | 48 49 | mto | |
51 | breq2 | |
|
52 | 50 51 | mtbiri | |
53 | 52 | con2i | |
54 | 53 | nexdv | |
55 | reldom | |
|
56 | 55 | brrelex2i | |
57 | breng | |
|
58 | 32 57 | mpan | |
59 | 56 58 | syl | |
60 | 29 4 | sylibr | |
61 | 56 6 | syl | |
62 | 60 61 | mpbid | |
63 | f1ocnv | |
|
64 | f1of1 | |
|
65 | f1eq3 | |
|
66 | 12 65 | ax-mp | |
67 | 64 66 | sylib | |
68 | 63 67 | syl | |
69 | f1cdmsn | |
|
70 | 68 69 | sylan | |
71 | 70 | expcom | |
72 | 71 | exlimdv | |
73 | 62 72 | syl | |
74 | 59 73 | sylbid | |
75 | 54 74 | mtod | |
76 | brsdom | |
|
77 | 29 75 76 | sylanbrc | |
78 | 24 77 | impbii | |