Metamath Proof Explorer


Theorem 1sdom2dom

Description: Strict dominance over 1 is the same as dominance over 2. (Contributed by BTernaryTau, 23-Dec-2024)

Ref Expression
Assertion 1sdom2dom 1𝑜A2𝑜A

Proof

Step Hyp Ref Expression
1 relsdom Rel
2 1 brrelex2i 1𝑜AAV
3 sdomdom 1𝑜A1𝑜A
4 0sdom1dom A1𝑜A
5 3 4 sylibr 1𝑜AA
6 0sdomg AVAA
7 2 6 syl 1𝑜AAA
8 5 7 mpbid 1𝑜AA
9 n0snor2el AxAyAxyxA=x
10 8 9 syl 1𝑜AxAyAxyxA=x
11 sdomnen 1𝑜A¬1𝑜A
12 df1o2 1𝑜=
13 0ex V
14 vex xV
15 en2sn VxVx
16 13 14 15 mp2an x
17 12 16 eqbrtri 1𝑜x
18 breq2 A=x1𝑜A1𝑜x
19 17 18 mpbiri A=x1𝑜A
20 19 exlimiv xA=x1𝑜A
21 11 20 nsyl 1𝑜A¬xA=x
22 10 21 olcnd 1𝑜AxAyAxy
23 rex2dom AVxAyAxy2𝑜A
24 2 22 23 syl2anc 1𝑜A2𝑜A
25 snsspr1 1𝑜
26 df2o3 2𝑜=1𝑜
27 25 12 26 3sstr4i 1𝑜2𝑜
28 domssl 1𝑜2𝑜2𝑜A1𝑜A
29 27 28 mpan 2𝑜A1𝑜A
30 snnen2o ¬y2𝑜
31 13 a1i V
32 1oex 1𝑜V
33 32 a1i 1𝑜V
34 1n0 1𝑜
35 34 nesymi ¬=1𝑜
36 35 a1i ¬=1𝑜
37 31 33 36 enpr2d 1𝑜2𝑜
38 37 mptru 1𝑜2𝑜
39 26 38 eqbrtri 2𝑜2𝑜
40 breq1 2𝑜=y2𝑜2𝑜y2𝑜
41 39 40 mpbii 2𝑜=yy2𝑜
42 30 41 mto ¬2𝑜=y
43 42 nex ¬y2𝑜=y
44 2on0 2𝑜
45 f1cdmsn f:2𝑜1-1x2𝑜y2𝑜=y
46 44 45 mpan2 f:2𝑜1-1xy2𝑜=y
47 43 46 mto ¬f:2𝑜1-1x
48 47 nex ¬ff:2𝑜1-1x
49 brdomi 2𝑜xff:2𝑜1-1x
50 48 49 mto ¬2𝑜x
51 breq2 A=x2𝑜A2𝑜x
52 50 51 mtbiri A=x¬2𝑜A
53 52 con2i 2𝑜A¬A=x
54 53 nexdv 2𝑜A¬xA=x
55 reldom Rel
56 55 brrelex2i 2𝑜AAV
57 breng 1𝑜VAV1𝑜Aff:1𝑜1-1 ontoA
58 32 57 mpan AV1𝑜Aff:1𝑜1-1 ontoA
59 56 58 syl 2𝑜A1𝑜Aff:1𝑜1-1 ontoA
60 29 4 sylibr 2𝑜AA
61 56 6 syl 2𝑜AAA
62 60 61 mpbid 2𝑜AA
63 f1ocnv f:1𝑜1-1 ontoAf-1:A1-1 onto1𝑜
64 f1of1 f-1:A1-1 onto1𝑜f-1:A1-11𝑜
65 f1eq3 1𝑜=f-1:A1-11𝑜f-1:A1-1
66 12 65 ax-mp f-1:A1-11𝑜f-1:A1-1
67 64 66 sylib f-1:A1-1 onto1𝑜f-1:A1-1
68 63 67 syl f:1𝑜1-1 ontoAf-1:A1-1
69 f1cdmsn f-1:A1-1AxA=x
70 68 69 sylan f:1𝑜1-1 ontoAAxA=x
71 70 expcom Af:1𝑜1-1 ontoAxA=x
72 71 exlimdv Aff:1𝑜1-1 ontoAxA=x
73 62 72 syl 2𝑜Aff:1𝑜1-1 ontoAxA=x
74 59 73 sylbid 2𝑜A1𝑜AxA=x
75 54 74 mtod 2𝑜A¬1𝑜A
76 brsdom 1𝑜A1𝑜A¬1𝑜A
77 29 75 76 sylanbrc 2𝑜A1𝑜A
78 24 77 impbii 1𝑜A2𝑜A