Metamath Proof Explorer


Theorem 1stf1

Description: Value of the first projection on an object. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses 1stfval.t T = C × c D
1stfval.b B = Base T
1stfval.h H = Hom T
1stfval.c φ C Cat
1stfval.d φ D Cat
1stfval.p P = C 1 st F D
1stf1.p φ R B
Assertion 1stf1 φ 1 st P R = 1 st R

Proof

Step Hyp Ref Expression
1 1stfval.t T = C × c D
2 1stfval.b B = Base T
3 1stfval.h H = Hom T
4 1stfval.c φ C Cat
5 1stfval.d φ D Cat
6 1stfval.p P = C 1 st F D
7 1stf1.p φ R B
8 1 2 3 4 5 6 1stfval φ P = 1 st B x B , y B 1 st x H y
9 fo1st 1 st : V onto V
10 fofun 1 st : V onto V Fun 1 st
11 9 10 ax-mp Fun 1 st
12 2 fvexi B V
13 resfunexg Fun 1 st B V 1 st B V
14 11 12 13 mp2an 1 st B V
15 12 12 mpoex x B , y B 1 st x H y V
16 14 15 op1std P = 1 st B x B , y B 1 st x H y 1 st P = 1 st B
17 8 16 syl φ 1 st P = 1 st B
18 17 fveq1d φ 1 st P R = 1 st B R
19 7 fvresd φ 1 st B R = 1 st R
20 18 19 eqtrd φ 1 st P R = 1 st R