Metamath Proof Explorer


Theorem 1stf1

Description: Value of the first projection on an object. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses 1stfval.t T=C×cD
1stfval.b B=BaseT
1stfval.h H=HomT
1stfval.c φCCat
1stfval.d φDCat
1stfval.p P=C1stFD
1stf1.p φRB
Assertion 1stf1 φ1stPR=1stR

Proof

Step Hyp Ref Expression
1 1stfval.t T=C×cD
2 1stfval.b B=BaseT
3 1stfval.h H=HomT
4 1stfval.c φCCat
5 1stfval.d φDCat
6 1stfval.p P=C1stFD
7 1stf1.p φRB
8 1 2 3 4 5 6 1stfval φP=1stBxB,yB1stxHy
9 fo1st 1st:VontoV
10 fofun 1st:VontoVFun1st
11 9 10 ax-mp Fun1st
12 2 fvexi BV
13 resfunexg Fun1stBV1stBV
14 11 12 13 mp2an 1stBV
15 12 12 mpoex xB,yB1stxHyV
16 14 15 op1std P=1stBxB,yB1stxHy1stP=1stB
17 8 16 syl φ1stP=1stB
18 17 fveq1d φ1stPR=1stBR
19 7 fvresd φ1stBR=1stR
20 18 19 eqtrd φ1stPR=1stR