Metamath Proof Explorer


Theorem 1unit

Description: The multiplicative identity is a unit. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses unit.1 U=UnitR
unit.2 1˙=1R
Assertion 1unit RRing1˙U

Proof

Step Hyp Ref Expression
1 unit.1 U=UnitR
2 unit.2 1˙=1R
3 eqid BaseR=BaseR
4 3 2 ringidcl RRing1˙BaseR
5 eqid rR=rR
6 3 5 dvdsrid RRing1˙BaseR1˙rR1˙
7 4 6 mpdan RRing1˙rR1˙
8 eqid opprR=opprR
9 8 opprring RRingopprRRing
10 8 3 opprbas BaseR=BaseopprR
11 eqid ropprR=ropprR
12 10 11 dvdsrid opprRRing1˙BaseR1˙ropprR1˙
13 9 4 12 syl2anc RRing1˙ropprR1˙
14 1 2 5 8 11 isunit 1˙U1˙rR1˙1˙ropprR1˙
15 7 13 14 sylanbrc RRing1˙U