Metamath Proof Explorer


Theorem 235t711

Description: Calculate a product by long multiplication as a base comparison with other multiplication algorithms.

Conveniently, 7 1 1 has two ones which greatly simplifies calculations like 2 3 5 x. 1 . There isn't a higher level mulcomli saving the lower level uses of mulcomli within 2 3 5 x. 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 are added then this proof would benefit more than ex-decpmul .

For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 or 8t7e56 . (Contributed by Steven Nguyen, 10-Dec-2022) (New usage is discouraged.)

Ref Expression
Assertion 235t711 235711=167085

Proof

Step Hyp Ref Expression
1 2nn0 20
2 3nn0 30
3 1 2 deccl 230
4 5nn0 50
5 3 4 deccl 2350
6 7nn0 70
7 1nn0 10
8 6 7 deccl 710
9 eqid 711=711
10 eqid 71=71
11 eqid 23=23
12 8nn0 80
13 eqid 235=235
14 3 nn0cni 23
15 2cn 2
16 3p2e5 3+2=5
17 1 2 1 11 16 decaddi 23+2=25
18 14 15 17 addcomli 2+23=25
19 0nn0 00
20 4nn0 40
21 6nn0 60
22 7 21 deccl 160
23 1 20 nn0addcli 2+40
24 7cn 7
25 7t2e14 72=14
26 24 15 25 mulcomli 27=14
27 4p2e6 4+2=6
28 7 20 1 26 27 decaddi 27+2=16
29 3cn 3
30 7t3e21 73=21
31 24 29 30 mulcomli 37=21
32 6 1 2 11 7 1 28 31 decmul1c 237=161
33 4cn 4
34 15 33 addcli 2+4
35 ax-1cn 1
36 33 15 27 addcomli 2+4=6
37 36 oveq1i 2+4+1=6+1
38 6p1e7 6+1=7
39 37 38 eqtri 2+4+1=7
40 34 35 39 addcomli 1+2+4=7
41 22 7 23 32 40 decaddi 237+2+4=167
42 5cn 5
43 7t5e35 75=35
44 24 42 43 mulcomli 57=35
45 3p1e4 3+1=4
46 5p5e10 5+5=10
47 2 4 4 44 45 46 decaddci2 57+5=40
48 3 4 1 4 13 18 6 19 20 41 47 decmac 2357+2+23=1670
49 5 nn0cni 235
50 49 mulridi 2351=235
51 5p3e8 5+3=8
52 3 4 2 50 51 decaddi 2351+3=238
53 6 7 1 2 10 11 5 12 3 48 52 decma2c 23571+23=16708
54 5 8 7 9 4 3 53 50 decmul2c 235711=167085