Metamath Proof Explorer


Theorem 2ax6elem

Description: We can always find values matching x and y , as long as they are represented by distinct variables. This theorem merges two ax6e instances E. z z = x and E. w w = y into a common expression. Alan Sare contributed a variant of this theorem with distinct variable conditions before, see ax6e2nd . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Wolf Lammen, 27-Sep-2018) (New usage is discouraged.)

Ref Expression
Assertion 2ax6elem ¬ww=zzwz=xw=y

Proof

Step Hyp Ref Expression
1 ax6e zz=x
2 nfnae z¬ww=z
3 nfnae z¬ww=x
4 2 3 nfan z¬ww=z¬ww=x
5 nfeqf ¬ww=z¬ww=xwz=x
6 pm3.21 w=yz=xz=xw=y
7 5 6 spimed ¬ww=z¬ww=xz=xwz=xw=y
8 4 7 eximd ¬ww=z¬ww=xzz=xzwz=xw=y
9 1 8 mpi ¬ww=z¬ww=xzwz=xw=y
10 9 ex ¬ww=z¬ww=xzwz=xw=y
11 ax6e zz=y
12 nfae zww=x
13 equvini z=ywz=ww=y
14 equtrr w=xz=wz=x
15 14 anim1d w=xz=ww=yz=xw=y
16 15 aleximi ww=xwz=ww=ywz=xw=y
17 13 16 syl5 ww=xz=ywz=xw=y
18 12 17 eximd ww=xzz=yzwz=xw=y
19 11 18 mpi ww=xzwz=xw=y
20 10 19 pm2.61d2 ¬ww=zzwz=xw=y