Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | 2dom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o2 | |
|
2 | 1 | breq1i | |
3 | brdomi | |
|
4 | 2 3 | sylbi | |
5 | f1f | |
|
6 | 0ex | |
|
7 | 6 | prid1 | |
8 | ffvelcdm | |
|
9 | 5 7 8 | sylancl | |
10 | snex | |
|
11 | 10 | prid2 | |
12 | ffvelcdm | |
|
13 | 5 11 12 | sylancl | |
14 | 0nep0 | |
|
15 | 14 | neii | |
16 | f1fveq | |
|
17 | 7 11 16 | mpanr12 | |
18 | 15 17 | mtbiri | |
19 | eqeq1 | |
|
20 | 19 | notbid | |
21 | eqeq2 | |
|
22 | 21 | notbid | |
23 | 20 22 | rspc2ev | |
24 | 9 13 18 23 | syl3anc | |
25 | 24 | exlimiv | |
26 | 4 25 | syl | |