Metamath Proof Explorer


Theorem 2dom

Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004)

Ref Expression
Assertion 2dom 2𝑜AxAyA¬x=y

Proof

Step Hyp Ref Expression
1 df2o2 2𝑜=
2 1 breq1i 2𝑜AA
3 brdomi Aff:1-1A
4 2 3 sylbi 2𝑜Aff:1-1A
5 f1f f:1-1Af:A
6 0ex V
7 6 prid1
8 ffvelcdm f:AfA
9 5 7 8 sylancl f:1-1AfA
10 snex V
11 10 prid2
12 ffvelcdm f:AfA
13 5 11 12 sylancl f:1-1AfA
14 0nep0
15 14 neii ¬=
16 f1fveq f:1-1Af=f=
17 7 11 16 mpanr12 f:1-1Af=f=
18 15 17 mtbiri f:1-1A¬f=f
19 eqeq1 x=fx=yf=y
20 19 notbid x=f¬x=y¬f=y
21 eqeq2 y=ff=yf=f
22 21 notbid y=f¬f=y¬f=f
23 20 22 rspc2ev fAfA¬f=fxAyA¬x=y
24 9 13 18 23 syl3anc f:1-1AxAyA¬x=y
25 24 exlimiv ff:1-1AxAyA¬x=y
26 4 25 syl 2𝑜AxAyA¬x=y