Metamath Proof Explorer


Theorem fundmen

Description: A function is equinumerous to its domain. Exercise 4 of Suppes p. 98. (Contributed by NM, 28-Jul-2004) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Hypothesis fundmen.1 FV
Assertion fundmen FunFdomFF

Proof

Step Hyp Ref Expression
1 fundmen.1 FV
2 1 dmex domFV
3 2 a1i FunFdomFV
4 1 a1i FunFFV
5 funfvop FunFxdomFxFxF
6 5 ex FunFxdomFxFxF
7 funrel FunFRelF
8 elreldm RelFyFydomF
9 8 ex RelFyFydomF
10 7 9 syl FunFyFydomF
11 df-rel RelFFV×V
12 7 11 sylib FunFFV×V
13 12 sselda FunFyFyV×V
14 elvv yV×Vzwy=zw
15 13 14 sylib FunFyFzwy=zw
16 inteq y=zwy=zw
17 16 inteqd y=zwy=zw
18 vex zV
19 vex wV
20 18 19 op1stb zw=z
21 17 20 eqtrdi y=zwy=z
22 eqeq1 x=yx=zy=z
23 21 22 imbitrrid x=yy=zwx=z
24 opeq1 x=zxw=zw
25 23 24 syl6 x=yy=zwxw=zw
26 25 imp x=yy=zwxw=zw
27 eqeq2 xw=zwy=xwy=zw
28 27 biimprcd y=zwxw=zwy=xw
29 28 adantl x=yy=zwxw=zwy=xw
30 26 29 mpd x=yy=zwy=xw
31 30 ancoms y=zwx=yy=xw
32 31 adantl FunFyFy=zwx=yy=xw
33 30 eleq1d x=yy=zwyFxwF
34 33 adantl FunFx=yy=zwyFxwF
35 funopfv FunFxwFFx=w
36 35 adantr FunFx=yy=zwxwFFx=w
37 34 36 sylbid FunFx=yy=zwyFFx=w
38 37 exp32 FunFx=yy=zwyFFx=w
39 38 com24 FunFyFy=zwx=yFx=w
40 39 imp43 FunFyFy=zwx=yFx=w
41 40 opeq2d FunFyFy=zwx=yxFx=xw
42 32 41 eqtr4d FunFyFy=zwx=yy=xFx
43 42 exp32 FunFyFy=zwx=yy=xFx
44 43 exlimdvv FunFyFzwy=zwx=yy=xFx
45 15 44 mpd FunFyFx=yy=xFx
46 45 adantrl FunFxdomFyFx=yy=xFx
47 inteq y=xFxy=xFx
48 47 inteqd y=xFxy=xFx
49 vex xV
50 fvex FxV
51 49 50 op1stb xFx=x
52 48 51 eqtr2di y=xFxx=y
53 46 52 impbid1 FunFxdomFyFx=yy=xFx
54 53 ex FunFxdomFyFx=yy=xFx
55 3 4 6 10 54 en3d FunFdomFF