Description: A function is equinumerous to its domain. Exercise 4 of Suppes p. 98. (Contributed by NM, 28-Jul-2004) (Revised by Mario Carneiro, 15-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fundmen.1 | |
|
Assertion | fundmen | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fundmen.1 | |
|
2 | 1 | dmex | |
3 | 2 | a1i | |
4 | 1 | a1i | |
5 | funfvop | |
|
6 | 5 | ex | |
7 | funrel | |
|
8 | elreldm | |
|
9 | 8 | ex | |
10 | 7 9 | syl | |
11 | df-rel | |
|
12 | 7 11 | sylib | |
13 | 12 | sselda | |
14 | elvv | |
|
15 | 13 14 | sylib | |
16 | inteq | |
|
17 | 16 | inteqd | |
18 | vex | |
|
19 | vex | |
|
20 | 18 19 | op1stb | |
21 | 17 20 | eqtrdi | |
22 | eqeq1 | |
|
23 | 21 22 | imbitrrid | |
24 | opeq1 | |
|
25 | 23 24 | syl6 | |
26 | 25 | imp | |
27 | eqeq2 | |
|
28 | 27 | biimprcd | |
29 | 28 | adantl | |
30 | 26 29 | mpd | |
31 | 30 | ancoms | |
32 | 31 | adantl | |
33 | 30 | eleq1d | |
34 | 33 | adantl | |
35 | funopfv | |
|
36 | 35 | adantr | |
37 | 34 36 | sylbid | |
38 | 37 | exp32 | |
39 | 38 | com24 | |
40 | 39 | imp43 | |
41 | 40 | opeq2d | |
42 | 32 41 | eqtr4d | |
43 | 42 | exp32 | |
44 | 43 | exlimdvv | |
45 | 15 44 | mpd | |
46 | 45 | adantrl | |
47 | inteq | |
|
48 | 47 | inteqd | |
49 | vex | |
|
50 | fvex | |
|
51 | 49 50 | op1stb | |
52 | 48 51 | eqtr2di | |
53 | 46 52 | impbid1 | |
54 | 53 | ex | |
55 | 3 4 6 10 54 | en3d | |