| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df2o2 |
⊢ 2o = { ∅ , { ∅ } } |
| 2 |
1
|
breq1i |
⊢ ( 2o ≼ 𝐴 ↔ { ∅ , { ∅ } } ≼ 𝐴 ) |
| 3 |
|
brdomi |
⊢ ( { ∅ , { ∅ } } ≼ 𝐴 → ∃ 𝑓 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 ) |
| 4 |
2 3
|
sylbi |
⊢ ( 2o ≼ 𝐴 → ∃ 𝑓 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 ) |
| 5 |
|
f1f |
⊢ ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → 𝑓 : { ∅ , { ∅ } } ⟶ 𝐴 ) |
| 6 |
|
0ex |
⊢ ∅ ∈ V |
| 7 |
6
|
prid1 |
⊢ ∅ ∈ { ∅ , { ∅ } } |
| 8 |
|
ffvelcdm |
⊢ ( ( 𝑓 : { ∅ , { ∅ } } ⟶ 𝐴 ∧ ∅ ∈ { ∅ , { ∅ } } ) → ( 𝑓 ‘ ∅ ) ∈ 𝐴 ) |
| 9 |
5 7 8
|
sylancl |
⊢ ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → ( 𝑓 ‘ ∅ ) ∈ 𝐴 ) |
| 10 |
|
snex |
⊢ { ∅ } ∈ V |
| 11 |
10
|
prid2 |
⊢ { ∅ } ∈ { ∅ , { ∅ } } |
| 12 |
|
ffvelcdm |
⊢ ( ( 𝑓 : { ∅ , { ∅ } } ⟶ 𝐴 ∧ { ∅ } ∈ { ∅ , { ∅ } } ) → ( 𝑓 ‘ { ∅ } ) ∈ 𝐴 ) |
| 13 |
5 11 12
|
sylancl |
⊢ ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → ( 𝑓 ‘ { ∅ } ) ∈ 𝐴 ) |
| 14 |
|
0nep0 |
⊢ ∅ ≠ { ∅ } |
| 15 |
14
|
neii |
⊢ ¬ ∅ = { ∅ } |
| 16 |
|
f1fveq |
⊢ ( ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 ∧ ( ∅ ∈ { ∅ , { ∅ } } ∧ { ∅ } ∈ { ∅ , { ∅ } } ) ) → ( ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ↔ ∅ = { ∅ } ) ) |
| 17 |
7 11 16
|
mpanr12 |
⊢ ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → ( ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ↔ ∅ = { ∅ } ) ) |
| 18 |
15 17
|
mtbiri |
⊢ ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → ¬ ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ) |
| 19 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑓 ‘ ∅ ) → ( 𝑥 = 𝑦 ↔ ( 𝑓 ‘ ∅ ) = 𝑦 ) ) |
| 20 |
19
|
notbid |
⊢ ( 𝑥 = ( 𝑓 ‘ ∅ ) → ( ¬ 𝑥 = 𝑦 ↔ ¬ ( 𝑓 ‘ ∅ ) = 𝑦 ) ) |
| 21 |
|
eqeq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ { ∅ } ) → ( ( 𝑓 ‘ ∅ ) = 𝑦 ↔ ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ) ) |
| 22 |
21
|
notbid |
⊢ ( 𝑦 = ( 𝑓 ‘ { ∅ } ) → ( ¬ ( 𝑓 ‘ ∅ ) = 𝑦 ↔ ¬ ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ) ) |
| 23 |
20 22
|
rspc2ev |
⊢ ( ( ( 𝑓 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝑓 ‘ { ∅ } ) ∈ 𝐴 ∧ ¬ ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) |
| 24 |
9 13 18 23
|
syl3anc |
⊢ ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) |
| 25 |
24
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) |
| 26 |
4 25
|
syl |
⊢ ( 2o ≼ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) |