Metamath Proof Explorer


Theorem 2elresin

Description: Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994)

Ref Expression
Assertion 2elresin FFnAGFnBxyFxzGxyFABxzGAB

Proof

Step Hyp Ref Expression
1 fnop FFnAxyFxA
2 fnop GFnBxzGxB
3 1 2 anim12i FFnAxyFGFnBxzGxAxB
4 3 an4s FFnAGFnBxyFxzGxAxB
5 elin xABxAxB
6 4 5 sylibr FFnAGFnBxyFxzGxAB
7 vex yV
8 7 opres xABxyFABxyF
9 vex zV
10 9 opres xABxzGABxzG
11 8 10 anbi12d xABxyFABxzGABxyFxzG
12 11 biimprd xABxyFxzGxyFABxzGAB
13 6 12 syl FFnAGFnBxyFxzGxyFxzGxyFABxzGAB
14 13 ex FFnAGFnBxyFxzGxyFxzGxyFABxzGAB
15 14 pm2.43d FFnAGFnBxyFxzGxyFABxzGAB
16 resss FABF
17 16 sseli xyFABxyF
18 resss GABG
19 18 sseli xzGABxzG
20 17 19 anim12i xyFABxzGABxyFxzG
21 15 20 impbid1 FFnAGFnBxyFxzGxyFABxzGAB