Description: Two lattice lines in a lattice plane always meet. (Contributed by NM, 5-Jul-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2llnm3.l | |
|
2llnm3.m | |
||
2llnm3.z | |
||
2llnm3.n | |
||
2llnm3.p | |
||
Assertion | 2llnm3N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2llnm3.l | |
|
2 | 2llnm3.m | |
|
3 | 2llnm3.z | |
|
4 | 2llnm3.n | |
|
5 | 2llnm3.p | |
|
6 | oveq1 | |
|
7 | 6 | neeq1d | |
8 | simpl1 | |
|
9 | hlatl | |
|
10 | 8 9 | syl | |
11 | simpl2 | |
|
12 | simpl3l | |
|
13 | simpl3r | |
|
14 | simpr | |
|
15 | eqid | |
|
16 | 1 2 15 4 5 | 2llnm2N | |
17 | 8 11 12 13 14 16 | syl113anc | |
18 | 3 15 | atn0 | |
19 | 10 17 18 | syl2anc | |
20 | hllat | |
|
21 | 20 | 3ad2ant1 | |
22 | simp22 | |
|
23 | eqid | |
|
24 | 23 4 | llnbase | |
25 | 22 24 | syl | |
26 | 23 2 | latmidm | |
27 | 21 25 26 | syl2anc | |
28 | simp1 | |
|
29 | 3 4 | llnn0 | |
30 | 28 22 29 | syl2anc | |
31 | 27 30 | eqnetrd | |
32 | 7 19 31 | pm2.61ne | |