Metamath Proof Explorer


Theorem 2llnm3N

Description: Two lattice lines in a lattice plane always meet. (Contributed by NM, 5-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2llnm3.l ˙=K
2llnm3.m ˙=meetK
2llnm3.z 0˙=0.K
2llnm3.n N=LLinesK
2llnm3.p P=LPlanesK
Assertion 2llnm3N KHLXNYNWPX˙WY˙WX˙Y0˙

Proof

Step Hyp Ref Expression
1 2llnm3.l ˙=K
2 2llnm3.m ˙=meetK
3 2llnm3.z 0˙=0.K
4 2llnm3.n N=LLinesK
5 2llnm3.p P=LPlanesK
6 oveq1 X=YX˙Y=Y˙Y
7 6 neeq1d X=YX˙Y0˙Y˙Y0˙
8 simpl1 KHLXNYNWPX˙WY˙WXYKHL
9 hlatl KHLKAtLat
10 8 9 syl KHLXNYNWPX˙WY˙WXYKAtLat
11 simpl2 KHLXNYNWPX˙WY˙WXYXNYNWP
12 simpl3l KHLXNYNWPX˙WY˙WXYX˙W
13 simpl3r KHLXNYNWPX˙WY˙WXYY˙W
14 simpr KHLXNYNWPX˙WY˙WXYXY
15 eqid AtomsK=AtomsK
16 1 2 15 4 5 2llnm2N KHLXNYNWPX˙WY˙WXYX˙YAtomsK
17 8 11 12 13 14 16 syl113anc KHLXNYNWPX˙WY˙WXYX˙YAtomsK
18 3 15 atn0 KAtLatX˙YAtomsKX˙Y0˙
19 10 17 18 syl2anc KHLXNYNWPX˙WY˙WXYX˙Y0˙
20 hllat KHLKLat
21 20 3ad2ant1 KHLXNYNWPX˙WY˙WKLat
22 simp22 KHLXNYNWPX˙WY˙WYN
23 eqid BaseK=BaseK
24 23 4 llnbase YNYBaseK
25 22 24 syl KHLXNYNWPX˙WY˙WYBaseK
26 23 2 latmidm KLatYBaseKY˙Y=Y
27 21 25 26 syl2anc KHLXNYNWPX˙WY˙WY˙Y=Y
28 simp1 KHLXNYNWPX˙WY˙WKHL
29 3 4 llnn0 KHLYNY0˙
30 28 22 29 syl2anc KHLXNYNWPX˙WY˙WY0˙
31 27 30 eqnetrd KHLXNYNWPX˙WY˙WY˙Y0˙
32 7 19 31 pm2.61ne KHLXNYNWPX˙WY˙WX˙Y0˙