Metamath Proof Explorer


Theorem 2logb9irr

Description: Example for logbgcd1irr . The logarithm of nine to base two is irrational. (Contributed by AV, 29-Dec-2022)

Ref Expression
Assertion 2logb9irr log29

Proof

Step Hyp Ref Expression
1 2z 2
2 9nn 9
3 2 nnzi 9
4 2re 2
5 9re 9
6 2lt9 2<9
7 4 5 6 ltleii 29
8 eluz2 922929
9 1 3 7 8 mpbir3an 92
10 uzid 222
11 1 10 ax-mp 22
12 sq3 32=9
13 12 eqcomi 9=32
14 13 oveq1i 9gcd2=32gcd2
15 2lt3 2<3
16 4 15 gtneii 32
17 3prm 3
18 2prm 2
19 prmrp 323gcd2=132
20 17 18 19 mp2an 3gcd2=132
21 16 20 mpbir 3gcd2=1
22 3z 3
23 2nn0 20
24 rpexp1i 32203gcd2=132gcd2=1
25 22 1 23 24 mp3an 3gcd2=132gcd2=1
26 21 25 ax-mp 32gcd2=1
27 14 26 eqtri 9gcd2=1
28 logbgcd1irr 92229gcd2=1log29
29 9 11 27 28 mp3an log29