Metamath Proof Explorer


Theorem 2reu7

Description: Two equivalent expressions for double restricted existential uniqueness, analogous to 2eu7 . (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Assertion 2reu7 ∃!xAyBφ∃!yBxAφ∃!xA∃!yBxAφyBφ

Proof

Step Hyp Ref Expression
1 nfcv _xB
2 nfre1 xxAφ
3 1 2 nfreuw x∃!yBxAφ
4 3 reuan ∃!xA∃!yBxAφyBφ∃!yBxAφ∃!xAyBφ
5 ancom xAφyBφyBφxAφ
6 5 reubii ∃!yBxAφyBφ∃!yByBφxAφ
7 nfre1 yyBφ
8 7 reuan ∃!yByBφxAφyBφ∃!yBxAφ
9 ancom yBφ∃!yBxAφ∃!yBxAφyBφ
10 6 8 9 3bitri ∃!yBxAφyBφ∃!yBxAφyBφ
11 10 reubii ∃!xA∃!yBxAφyBφ∃!xA∃!yBxAφyBφ
12 ancom ∃!xAyBφ∃!yBxAφ∃!yBxAφ∃!xAyBφ
13 4 11 12 3bitr4ri ∃!xAyBφ∃!yBxAφ∃!xA∃!yBxAφyBφ