Metamath Proof Explorer


Theorem 2reu7

Description: Two equivalent expressions for double restricted existential uniqueness, analogous to 2eu7 . (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Assertion 2reu7 ( ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) ↔ ∃! 𝑥𝐴 ∃! 𝑦𝐵 ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜑 ) )

Proof

Step Hyp Ref Expression
1 nfcv 𝑥 𝐵
2 nfre1 𝑥𝑥𝐴 𝜑
3 1 2 nfreuw 𝑥 ∃! 𝑦𝐵𝑥𝐴 𝜑
4 3 reuan ( ∃! 𝑥𝐴 ( ∃! 𝑦𝐵𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜑 ) ↔ ( ∃! 𝑦𝐵𝑥𝐴 𝜑 ∧ ∃! 𝑥𝐴𝑦𝐵 𝜑 ) )
5 ancom ( ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜑 ) ↔ ( ∃ 𝑦𝐵 𝜑 ∧ ∃ 𝑥𝐴 𝜑 ) )
6 5 reubii ( ∃! 𝑦𝐵 ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜑 ) ↔ ∃! 𝑦𝐵 ( ∃ 𝑦𝐵 𝜑 ∧ ∃ 𝑥𝐴 𝜑 ) )
7 nfre1 𝑦𝑦𝐵 𝜑
8 7 reuan ( ∃! 𝑦𝐵 ( ∃ 𝑦𝐵 𝜑 ∧ ∃ 𝑥𝐴 𝜑 ) ↔ ( ∃ 𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) )
9 ancom ( ( ∃ 𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) ↔ ( ∃! 𝑦𝐵𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜑 ) )
10 6 8 9 3bitri ( ∃! 𝑦𝐵 ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜑 ) ↔ ( ∃! 𝑦𝐵𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜑 ) )
11 10 reubii ( ∃! 𝑥𝐴 ∃! 𝑦𝐵 ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜑 ) ↔ ∃! 𝑥𝐴 ( ∃! 𝑦𝐵𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜑 ) )
12 ancom ( ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) ↔ ( ∃! 𝑦𝐵𝑥𝐴 𝜑 ∧ ∃! 𝑥𝐴𝑦𝐵 𝜑 ) )
13 4 11 12 3bitr4ri ( ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) ↔ ∃! 𝑥𝐴 ∃! 𝑦𝐵 ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜑 ) )