Metamath Proof Explorer


Theorem 2reu8

Description: Two equivalent expressions for double restricted existential uniqueness, analogous to 2eu8 . Curiously, we can put E! on either of the internal conjuncts but not both. We can also commute E! x e. A E! y e. B using 2reu7 . (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Assertion 2reu8 ∃!xA∃!yBxAφyBφ∃!xA∃!yB∃!xAφyBφ

Proof

Step Hyp Ref Expression
1 2reu2 ∃!xAyBφ∃!yB∃!xAφ∃!yBxAφ
2 1 pm5.32i ∃!xAyBφ∃!yB∃!xAφ∃!xAyBφ∃!yBxAφ
3 nfcv _xB
4 nfreu1 x∃!xAφ
5 3 4 nfreuw x∃!yB∃!xAφ
6 5 reuan ∃!xA∃!yB∃!xAφyBφ∃!yB∃!xAφ∃!xAyBφ
7 ancom ∃!xAφyBφyBφ∃!xAφ
8 7 reubii ∃!yB∃!xAφyBφ∃!yByBφ∃!xAφ
9 nfre1 yyBφ
10 9 reuan ∃!yByBφ∃!xAφyBφ∃!yB∃!xAφ
11 ancom yBφ∃!yB∃!xAφ∃!yB∃!xAφyBφ
12 8 10 11 3bitri ∃!yB∃!xAφyBφ∃!yB∃!xAφyBφ
13 12 reubii ∃!xA∃!yB∃!xAφyBφ∃!xA∃!yB∃!xAφyBφ
14 ancom ∃!xAyBφ∃!yB∃!xAφ∃!yB∃!xAφ∃!xAyBφ
15 6 13 14 3bitr4ri ∃!xAyBφ∃!yB∃!xAφ∃!xA∃!yB∃!xAφyBφ
16 2reu7 ∃!xAyBφ∃!yBxAφ∃!xA∃!yBxAφyBφ
17 2 15 16 3bitr3ri ∃!xA∃!yBxAφyBφ∃!xA∃!yB∃!xAφyBφ