Metamath Proof Explorer
		
		
		
		Description:  Double application of rspcedvdw .  (Contributed by SN, 24-Aug-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | 2rspcedvdw.1 |  | 
					
						|  |  | 2rspcedvdw.2 |  | 
					
						|  |  | 2rspcedvdw.a |  | 
					
						|  |  | 2rspcedvdw.b |  | 
					
						|  |  | 2rspcedvdw.3 |  | 
				
					|  | Assertion | 2rspcedvdw |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2rspcedvdw.1 |  | 
						
							| 2 |  | 2rspcedvdw.2 |  | 
						
							| 3 |  | 2rspcedvdw.a |  | 
						
							| 4 |  | 2rspcedvdw.b |  | 
						
							| 5 |  | 2rspcedvdw.3 |  | 
						
							| 6 | 1 2 | rspc2ev |  | 
						
							| 7 | 3 4 5 6 | syl3anc |  |