Metamath Proof Explorer


Theorem 2sq

Description: All primes of the form 4 k + 1 are sums of two squares. This is Metamath 100 proof #20. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Assertion 2sq PPmod4=1xyP=x2+y2

Proof

Step Hyp Ref Expression
1 eqid ranwiw2=ranwiw2
2 oveq1 a=xagcdb=xgcdb
3 2 eqeq1d a=xagcdb=1xgcdb=1
4 oveq1 a=xa2=x2
5 4 oveq1d a=xa2+b2=x2+b2
6 5 eqeq2d a=xz=a2+b2z=x2+b2
7 3 6 anbi12d a=xagcdb=1z=a2+b2xgcdb=1z=x2+b2
8 oveq2 b=yxgcdb=xgcdy
9 8 eqeq1d b=yxgcdb=1xgcdy=1
10 oveq1 b=yb2=y2
11 10 oveq2d b=yx2+b2=x2+y2
12 11 eqeq2d b=yz=x2+b2z=x2+y2
13 9 12 anbi12d b=yxgcdb=1z=x2+b2xgcdy=1z=x2+y2
14 7 13 cbvrex2vw abagcdb=1z=a2+b2xyxgcdy=1z=x2+y2
15 14 abbii z|abagcdb=1z=a2+b2=z|xyxgcdy=1z=x2+y2
16 1 15 2sqlem11 PPmod4=1Pranwiw2
17 1 2sqlem2 Pranwiw2xyP=x2+y2
18 16 17 sylib PPmod4=1xyP=x2+y2