Metamath Proof Explorer


Theorem 2sqlem1

Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015)

Ref Expression
Hypothesis 2sq.1 S=ranwiw2
Assertion 2sqlem1 ASxiA=x2

Proof

Step Hyp Ref Expression
1 2sq.1 S=ranwiw2
2 1 eleq2i ASAranwiw2
3 fveq2 w=xw=x
4 3 oveq1d w=xw2=x2
5 4 cbvmptv wiw2=xix2
6 ovex x2V
7 5 6 elrnmpti Aranwiw2xiA=x2
8 2 7 bitri ASxiA=x2