Metamath Proof Explorer


Theorem 2strstr

Description: A constructed two-slot structure. Depending on hard-coded indices. Use 2strstr1 instead. (Contributed by Mario Carneiro, 29-Aug-2015) (New usage is discouraged.)

Ref Expression
Hypotheses 2str.g G=BasendxBEndx+˙
2str.e E=SlotN
2str.l 1<N
2str.n N
Assertion 2strstr GStruct1N

Proof

Step Hyp Ref Expression
1 2str.g G=BasendxBEndx+˙
2 2str.e E=SlotN
3 2str.l 1<N
4 2str.n N
5 1nn 1
6 basendx Basendx=1
7 2 4 ndxarg Endx=N
8 5 6 3 4 7 strle2 BasendxBEndx+˙Struct1N
9 1 8 eqbrtri GStruct1N