Metamath Proof Explorer


Theorem 3dimlem2

Description: Lemma for 3dim1 . (Contributed by NM, 25-Jul-2012)

Ref Expression
Hypotheses 3dim0.j ˙=joinK
3dim0.l ˙=K
3dim0.a A=AtomsK
Assertion 3dimlem2 KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙RPQ¬S˙P˙Q¬T˙P˙Q˙S

Proof

Step Hyp Ref Expression
1 3dim0.j ˙=joinK
2 3dim0.l ˙=K
3 3dim0.a A=AtomsK
4 simp3l KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙RPQ
5 simp22 KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙R¬S˙Q˙R
6 1 3 hlatjcom KHLPAQAP˙Q=Q˙P
7 6 3ad2ant1 KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙RP˙Q=Q˙P
8 simp3r KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙RP˙Q˙R
9 simp11 KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙RKHL
10 simp12 KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙RPA
11 simp21 KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙RRA
12 simp13 KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙RQA
13 2 1 3 hlatexchb1 KHLPARAQAPQP˙Q˙RQ˙P=Q˙R
14 9 10 11 12 4 13 syl131anc KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙RP˙Q˙RQ˙P=Q˙R
15 8 14 mpbid KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙RQ˙P=Q˙R
16 7 15 eqtrd KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙RP˙Q=Q˙R
17 16 breq2d KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙RS˙P˙QS˙Q˙R
18 5 17 mtbird KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙R¬S˙P˙Q
19 simp23 KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙R¬T˙Q˙R˙S
20 16 oveq1d KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙RP˙Q˙S=Q˙R˙S
21 20 breq2d KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙RT˙P˙Q˙ST˙Q˙R˙S
22 19 21 mtbird KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙R¬T˙P˙Q˙S
23 4 18 22 3jca KHLPAQARA¬S˙Q˙R¬T˙Q˙R˙SPQP˙Q˙RPQ¬S˙P˙Q¬T˙P˙Q˙S