Metamath Proof Explorer


Theorem 3jcad

Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005)

Ref Expression
Hypotheses 3jcad.1 φψχ
3jcad.2 φψθ
3jcad.3 φψτ
Assertion 3jcad φψχθτ

Proof

Step Hyp Ref Expression
1 3jcad.1 φψχ
2 3jcad.2 φψθ
3 3jcad.3 φψτ
4 1 imp φψχ
5 2 imp φψθ
6 3 imp φψτ
7 4 5 6 3jca φψχθτ
8 7 ex φψχθτ