Metamath Proof Explorer


Theorem 3spthond

Description: A simple path of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 10-Feb-2021) (Revised by AV, 24-Mar-2021)

Ref Expression
Hypotheses 3wlkd.p P=⟨“ABCD”⟩
3wlkd.f F=⟨“JKL”⟩
3wlkd.s φAVBVCVDV
3wlkd.n φABACBCBDCD
3wlkd.e φABIJBCIKCDIL
3wlkd.v V=VtxG
3wlkd.i I=iEdgG
3trld.n φJKJLKL
3spthd.n φAD
Assertion 3spthond φFASPathsOnGDP

Proof

Step Hyp Ref Expression
1 3wlkd.p P=⟨“ABCD”⟩
2 3wlkd.f F=⟨“JKL”⟩
3 3wlkd.s φAVBVCVDV
4 3wlkd.n φABACBCBDCD
5 3wlkd.e φABIJBCIKCDIL
6 3wlkd.v V=VtxG
7 3wlkd.i I=iEdgG
8 3trld.n φJKJLKL
9 3spthd.n φAD
10 1 2 3 4 5 6 7 8 3trlond φFATrailsOnGDP
11 1 2 3 4 5 6 7 8 9 3spthd φFSPathsGP
12 3 simplld φAV
13 3 simprrd φDV
14 s3cli ⟨“JKL”⟩WordV
15 2 14 eqeltri FWordV
16 s4cli ⟨“ABCD”⟩WordV
17 1 16 eqeltri PWordV
18 15 17 pm3.2i FWordVPWordV
19 18 a1i φFWordVPWordV
20 6 isspthson AVDVFWordVPWordVFASPathsOnGDPFATrailsOnGDPFSPathsGP
21 12 13 19 20 syl21anc φFASPathsOnGDPFATrailsOnGDPFSPathsGP
22 10 11 21 mpbir2and φFASPathsOnGDP