Metamath Proof Explorer


Theorem 3trld

Description: Construction of a trail from two given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017) (Revised by AV, 8-Feb-2021) (Revised by AV, 24-Mar-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses 3wlkd.p P = ⟨“ ABCD ”⟩
3wlkd.f F = ⟨“ JKL ”⟩
3wlkd.s φ A V B V C V D V
3wlkd.n φ A B A C B C B D C D
3wlkd.e φ A B I J B C I K C D I L
3wlkd.v V = Vtx G
3wlkd.i I = iEdg G
3trld.n φ J K J L K L
Assertion 3trld φ F Trails G P

Proof

Step Hyp Ref Expression
1 3wlkd.p P = ⟨“ ABCD ”⟩
2 3wlkd.f F = ⟨“ JKL ”⟩
3 3wlkd.s φ A V B V C V D V
4 3wlkd.n φ A B A C B C B D C D
5 3wlkd.e φ A B I J B C I K C D I L
6 3wlkd.v V = Vtx G
7 3wlkd.i I = iEdg G
8 3trld.n φ J K J L K L
9 1 2 3 4 5 6 7 3wlkd φ F Walks G P
10 1 2 3 4 5 3wlkdlem7 φ J V K V L V
11 funcnvs3 J V K V L V J K J L K L Fun ⟨“ JKL ”⟩ -1
12 10 8 11 syl2anc φ Fun ⟨“ JKL ”⟩ -1
13 2 cnveqi F -1 = ⟨“ JKL ”⟩ -1
14 13 funeqi Fun F -1 Fun ⟨“ JKL ”⟩ -1
15 12 14 sylibr φ Fun F -1
16 istrl F Trails G P F Walks G P Fun F -1
17 9 15 16 sylanbrc φ F Trails G P