Metamath Proof Explorer


Theorem 4atex3

Description: More general version of 4atex for a line S .\/ T not necessarily connected to P .\/ Q . (Contributed by NM, 29-May-2013)

Ref Expression
Hypotheses 4that.l ˙=K
4that.j ˙=joinK
4that.a A=AtomsK
4that.h H=LHypK
Assertion 4atex3 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rzA¬z˙WzSzTz˙S˙T

Proof

Step Hyp Ref Expression
1 4that.l ˙=K
2 4that.j ˙=joinK
3 4that.a A=AtomsK
4 4that.h H=LHypK
5 simp1 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rKHLWH
6 simp2 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rPA¬P˙WQA¬Q˙WSA¬S˙W
7 simp31 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rPQ
8 simp32l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rTA
9 simp33 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rrA¬r˙WP˙r=Q˙r
10 1 2 3 4 4atex2 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rzA¬z˙WS˙z=T˙z
11 5 6 7 8 9 10 syl113anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rzA¬z˙WS˙z=T˙z
12 simp1l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rKHL
13 hlcvl KHLKCvLat
14 12 13 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rKCvLat
15 14 adantr KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rzAKCvLat
16 simp23l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rSA
17 16 adantr KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rzASA
18 8 adantr KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rzATA
19 simpr KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rzAzA
20 simp32r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rST
21 20 adantr KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rzAST
22 3 1 2 cvlsupr2 KCvLatSATAzASTS˙z=T˙zzSzTz˙S˙T
23 15 17 18 19 21 22 syl131anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rzAS˙z=T˙zzSzTz˙S˙T
24 23 anbi2d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rzA¬z˙WS˙z=T˙z¬z˙WzSzTz˙S˙T
25 24 rexbidva KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rzA¬z˙WS˙z=T˙zzA¬z˙WzSzTz˙S˙T
26 11 25 mpbid KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTASTrA¬r˙WP˙r=Q˙rzA¬z˙WzSzTz˙S˙T