Metamath Proof Explorer


Theorem 4atexlemntlpq

Description: Lemma for 4atexlem7 . (Contributed by NM, 24-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
4thatlem0.l ˙=K
4thatlem0.j ˙=joinK
4thatlem0.m ˙=meetK
4thatlem0.a A=AtomsK
4thatlem0.h H=LHypK
4thatlem0.u U=P˙Q˙W
4thatlem0.v V=P˙S˙W
Assertion 4atexlemntlpq φ¬T˙P˙Q

Proof

Step Hyp Ref Expression
1 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
2 4thatlem0.l ˙=K
3 4thatlem0.j ˙=joinK
4 4thatlem0.m ˙=meetK
5 4thatlem0.a A=AtomsK
6 4thatlem0.h H=LHypK
7 4thatlem0.u U=P˙Q˙W
8 4thatlem0.v V=P˙S˙W
9 1 2 3 4 5 6 7 8 4atexlemtlw φT˙W
10 1 4atexlemkc φKCvLat
11 1 2 3 4 5 6 7 4atexlemu φUA
12 1 2 3 4 5 6 7 8 4atexlemv φVA
13 1 4atexlemt φTA
14 1 2 3 4 5 6 7 8 4atexlemunv φUV
15 1 4atexlemutvt φU˙T=V˙T
16 5 3 cvlsupr5 KCvLatUAVATAUVU˙T=V˙TTU
17 10 11 12 13 14 15 16 syl132anc φTU
18 17 adantr φT˙P˙QTU
19 1 4atexlemk φKHL
20 1 4atexlemw φWH
21 19 20 jca φKHLWH
22 21 adantr φT˙P˙QKHLWH
23 1 4atexlempw φPA¬P˙W
24 23 adantr φT˙P˙QPA¬P˙W
25 1 4atexlemq φQA
26 25 adantr φT˙P˙QQA
27 13 adantr φT˙P˙QTA
28 1 4atexlempnq φPQ
29 28 adantr φT˙P˙QPQ
30 simpr φT˙P˙QT˙P˙Q
31 2 3 4 5 6 7 lhpat3 KHLWHPA¬P˙WQATAPQT˙P˙Q¬T˙WTU
32 22 24 26 27 29 30 31 syl222anc φT˙P˙Q¬T˙WTU
33 18 32 mpbird φT˙P˙Q¬T˙W
34 33 ex φT˙P˙Q¬T˙W
35 9 34 mt2d φ¬T˙P˙Q