Metamath Proof Explorer


Theorem 4atexlemunv

Description: Lemma for 4atexlem7 . (Contributed by NM, 21-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
4thatlem0.l ˙=K
4thatlem0.j ˙=joinK
4thatlem0.m ˙=meetK
4thatlem0.a A=AtomsK
4thatlem0.h H=LHypK
4thatlem0.u U=P˙Q˙W
4thatlem0.v V=P˙S˙W
Assertion 4atexlemunv φUV

Proof

Step Hyp Ref Expression
1 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
2 4thatlem0.l ˙=K
3 4thatlem0.j ˙=joinK
4 4thatlem0.m ˙=meetK
5 4thatlem0.a A=AtomsK
6 4thatlem0.h H=LHypK
7 4thatlem0.u U=P˙Q˙W
8 4thatlem0.v V=P˙S˙W
9 1 4atexlemnslpq φ¬S˙P˙Q
10 1 4atexlemk φKHL
11 1 4atexlemp φPA
12 1 4atexlems φSA
13 2 3 5 hlatlej2 KHLPASAS˙P˙S
14 10 11 12 13 syl3anc φS˙P˙S
15 14 adantr φU=VS˙P˙S
16 1 4atexlemkl φKLat
17 1 3 5 4atexlempsb φP˙SBaseK
18 1 6 4atexlemwb φWBaseK
19 eqid BaseK=BaseK
20 19 2 4 latmle1 KLatP˙SBaseKWBaseKP˙S˙W˙P˙S
21 16 17 18 20 syl3anc φP˙S˙W˙P˙S
22 8 21 eqbrtrid φV˙P˙S
23 1 4atexlemkc φKCvLat
24 1 2 3 4 5 6 7 8 4atexlemv φVA
25 19 2 4 latmle2 KLatP˙SBaseKWBaseKP˙S˙W˙W
26 16 17 18 25 syl3anc φP˙S˙W˙W
27 8 26 eqbrtrid φV˙W
28 1 4atexlempw φPA¬P˙W
29 28 simprd φ¬P˙W
30 nbrne2 V˙W¬P˙WVP
31 27 29 30 syl2anc φVP
32 2 3 5 cvlatexchb1 KCvLatVASAPAVPV˙P˙SP˙V=P˙S
33 23 24 12 11 31 32 syl131anc φV˙P˙SP˙V=P˙S
34 22 33 mpbid φP˙V=P˙S
35 34 adantr φU=VP˙V=P˙S
36 oveq2 U=VP˙U=P˙V
37 36 eqcomd U=VP˙V=P˙U
38 1 4atexlemq φQA
39 19 3 5 hlatjcl KHLPAQAP˙QBaseK
40 10 11 38 39 syl3anc φP˙QBaseK
41 19 2 4 latmle1 KLatP˙QBaseKWBaseKP˙Q˙W˙P˙Q
42 16 40 18 41 syl3anc φP˙Q˙W˙P˙Q
43 7 42 eqbrtrid φU˙P˙Q
44 1 2 3 4 5 6 7 4atexlemu φUA
45 19 2 4 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
46 16 40 18 45 syl3anc φP˙Q˙W˙W
47 7 46 eqbrtrid φU˙W
48 nbrne2 U˙W¬P˙WUP
49 47 29 48 syl2anc φUP
50 2 3 5 cvlatexchb1 KCvLatUAQAPAUPU˙P˙QP˙U=P˙Q
51 23 44 38 11 49 50 syl131anc φU˙P˙QP˙U=P˙Q
52 43 51 mpbid φP˙U=P˙Q
53 37 52 sylan9eqr φU=VP˙V=P˙Q
54 35 53 eqtr3d φU=VP˙S=P˙Q
55 15 54 breqtrd φU=VS˙P˙Q
56 55 ex φU=VS˙P˙Q
57 56 necon3bd φ¬S˙P˙QUV
58 9 57 mpd φUV