Metamath Proof Explorer


Theorem lhpat3

Description: There is only one atom under both P .\/ Q and co-atom W . (Contributed by NM, 21-Nov-2012)

Ref Expression
Hypotheses lhpat.l ˙ = K
lhpat.j ˙ = join K
lhpat.m ˙ = meet K
lhpat.a A = Atoms K
lhpat.h H = LHyp K
lhpat2.r R = P ˙ Q ˙ W
Assertion lhpat3 K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q ¬ S ˙ W S R

Proof

Step Hyp Ref Expression
1 lhpat.l ˙ = K
2 lhpat.j ˙ = join K
3 lhpat.m ˙ = meet K
4 lhpat.a A = Atoms K
5 lhpat.h H = LHyp K
6 lhpat2.r R = P ˙ Q ˙ W
7 simpl3r K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S ˙ W S ˙ P ˙ Q
8 simpr K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S ˙ W S ˙ W
9 simp1ll K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q K HL
10 9 hllatd K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q K Lat
11 simp2r K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S A
12 eqid Base K = Base K
13 12 4 atbase S A S Base K
14 11 13 syl K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S Base K
15 simp1rl K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q P A
16 simp2l K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q Q A
17 12 2 4 hlatjcl K HL P A Q A P ˙ Q Base K
18 9 15 16 17 syl3anc K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q P ˙ Q Base K
19 simp1lr K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q W H
20 12 5 lhpbase W H W Base K
21 19 20 syl K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q W Base K
22 12 1 3 latlem12 K Lat S Base K P ˙ Q Base K W Base K S ˙ P ˙ Q S ˙ W S ˙ P ˙ Q ˙ W
23 10 14 18 21 22 syl13anc K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S ˙ P ˙ Q S ˙ W S ˙ P ˙ Q ˙ W
24 23 adantr K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S ˙ W S ˙ P ˙ Q S ˙ W S ˙ P ˙ Q ˙ W
25 7 8 24 mpbi2and K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S ˙ W S ˙ P ˙ Q ˙ W
26 25 6 breqtrrdi K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S ˙ W S ˙ R
27 9 adantr K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S ˙ W K HL
28 hlatl K HL K AtLat
29 27 28 syl K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S ˙ W K AtLat
30 simpl2r K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S ˙ W S A
31 simpl1l K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S ˙ W K HL W H
32 simpl1r K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S ˙ W P A ¬ P ˙ W
33 simpl2l K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S ˙ W Q A
34 simpl3l K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S ˙ W P Q
35 1 2 3 4 5 6 lhpat2 K HL W H P A ¬ P ˙ W Q A P Q R A
36 31 32 33 34 35 syl112anc K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S ˙ W R A
37 1 4 atcmp K AtLat S A R A S ˙ R S = R
38 29 30 36 37 syl3anc K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S ˙ W S ˙ R S = R
39 26 38 mpbid K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S ˙ W S = R
40 39 ex K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S ˙ W S = R
41 12 1 3 latmle2 K Lat P ˙ Q Base K W Base K P ˙ Q ˙ W ˙ W
42 10 18 21 41 syl3anc K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q P ˙ Q ˙ W ˙ W
43 6 42 eqbrtrid K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q R ˙ W
44 breq1 S = R S ˙ W R ˙ W
45 43 44 syl5ibrcom K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S = R S ˙ W
46 40 45 impbid K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q S ˙ W S = R
47 46 necon3bbid K HL W H P A ¬ P ˙ W Q A S A P Q S ˙ P ˙ Q ¬ S ˙ W S R