Metamath Proof Explorer


Theorem 4atlem4b

Description: Lemma for 4at . Frequently used associative law. (Contributed by NM, 9-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙=K
4at.j ˙=joinK
4at.a A=AtomsK
Assertion 4atlem4b KHLPAQARASAP˙Q˙R˙S=Q˙P˙R˙S

Proof

Step Hyp Ref Expression
1 4at.l ˙=K
2 4at.j ˙=joinK
3 4at.a A=AtomsK
4 simpl1 KHLPAQARASAKHL
5 simpl2 KHLPAQARASAPA
6 simpl3 KHLPAQARASAQA
7 simprl KHLPAQARASARA
8 simprr KHLPAQARASASA
9 2 3 hlatj4 KHLPAQARASAP˙Q˙R˙S=P˙R˙Q˙S
10 4 5 6 7 8 9 syl122anc KHLPAQARASAP˙Q˙R˙S=P˙R˙Q˙S
11 4 hllatd KHLPAQARASAKLat
12 eqid BaseK=BaseK
13 12 2 3 hlatjcl KHLPARAP˙RBaseK
14 4 5 7 13 syl3anc KHLPAQARASAP˙RBaseK
15 12 3 atbase QAQBaseK
16 6 15 syl KHLPAQARASAQBaseK
17 12 3 atbase SASBaseK
18 17 ad2antll KHLPAQARASASBaseK
19 12 2 latj12 KLatP˙RBaseKQBaseKSBaseKP˙R˙Q˙S=Q˙P˙R˙S
20 11 14 16 18 19 syl13anc KHLPAQARASAP˙R˙Q˙S=Q˙P˙R˙S
21 10 20 eqtrd KHLPAQARASAP˙Q˙R˙S=Q˙P˙R˙S