Metamath Proof Explorer


Theorem 6lcm4e12

Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020)

Ref Expression
Assertion 6lcm4e12 6lcm4=12

Proof

Step Hyp Ref Expression
1 6cn 6
2 4cn 4
3 1 2 mulcli 64
4 6nn0 60
5 4 nn0zi 6
6 4z 4
7 lcmcl 646lcm40
8 7 nn0cnd 646lcm4
9 5 6 8 mp2an 6lcm4
10 gcdcl 646gcd40
11 10 nn0cnd 646gcd4
12 5 6 11 mp2an 6gcd4
13 5 6 pm3.2i 64
14 4ne0 40
15 14 neii ¬4=0
16 15 intnan ¬6=04=0
17 gcdn0cl 64¬6=04=06gcd4
18 13 16 17 mp2an 6gcd4
19 18 nnne0i 6gcd40
20 12 19 pm3.2i 6gcd46gcd40
21 6nn 6
22 4nn 4
23 21 22 pm3.2i 64
24 lcmgcdnn 646lcm46gcd4=64
25 23 24 mp1i 646lcm46gcd46gcd406lcm46gcd4=64
26 25 eqcomd 646lcm46gcd46gcd4064=6lcm46gcd4
27 divmul3 646lcm46gcd46gcd40646gcd4=6lcm464=6lcm46gcd4
28 26 27 mpbird 646lcm46gcd46gcd40646gcd4=6lcm4
29 28 eqcomd 646lcm46gcd46gcd406lcm4=646gcd4
30 3 9 20 29 mp3an 6lcm4=646gcd4
31 6gcd4e2 6gcd4=2
32 31 oveq2i 646gcd4=642
33 2cn 2
34 2ne0 20
35 1 2 33 34 divassi 642=642
36 4d2e2 42=2
37 36 oveq2i 642=62
38 6t2e12 62=12
39 35 37 38 3eqtri 642=12
40 30 32 39 3eqtri 6lcm4=12