Metamath Proof Explorer


Theorem ab0orv

Description: The class abstraction defined by a formula not containing the abstraction variable is either the empty set or the universal class. (Contributed by Mario Carneiro, 29-Aug-2013) (Revised by BJ, 22-Mar-2020) Reduce axiom usage. (Revised by Gino Giotto, 30-Aug-2024)

Ref Expression
Assertion ab0orv x | φ = V x | φ =

Proof

Step Hyp Ref Expression
1 nfv y φ
2 nf3 y φ y φ y ¬ φ
3 1 2 mpbi y φ y ¬ φ
4 tbtru φ φ
5 df-clab y x | φ y x φ
6 sbv y x φ φ
7 5 6 bitr2i φ y x | φ
8 tru
9 vextru y x |
10 8 9 2th y x |
11 7 10 bibi12i φ y x | φ y x |
12 4 11 bitri φ y x | φ y x |
13 12 albii y φ y y x | φ y x |
14 dfcleq x | φ = x | y y x | φ y x |
15 dfv2 V = x |
16 15 eqcomi x | = V
17 16 eqeq2i x | φ = x | x | φ = V
18 13 14 17 3bitr2i y φ x | φ = V
19 equid y = y
20 19 nbn3 ¬ φ φ ¬ y = y
21 df-clab y x | ¬ x = x y x ¬ x = x
22 equid x = x
23 22 19 2th x = x y = y
24 23 notbii ¬ x = x ¬ y = y
25 24 a1i x = y ¬ x = x ¬ y = y
26 25 sbievw y x ¬ x = x ¬ y = y
27 21 26 bitr2i ¬ y = y y x | ¬ x = x
28 7 27 bibi12i φ ¬ y = y y x | φ y x | ¬ x = x
29 20 28 bitri ¬ φ y x | φ y x | ¬ x = x
30 29 albii y ¬ φ y y x | φ y x | ¬ x = x
31 dfcleq x | φ = x | ¬ x = x y y x | φ y x | ¬ x = x
32 dfnul2 = x | ¬ x = x
33 32 eqcomi x | ¬ x = x =
34 33 eqeq2i x | φ = x | ¬ x = x x | φ =
35 30 31 34 3bitr2i y ¬ φ x | φ =
36 18 35 orbi12i y φ y ¬ φ x | φ = V x | φ =
37 3 36 mpbi x | φ = V x | φ =