Metamath Proof Explorer


Theorem ab0orv

Description: The class abstraction defined by a formula not containing the abstraction variable is either the empty set or the universal class. (Contributed by Mario Carneiro, 29-Aug-2013) (Revised by BJ, 22-Mar-2020) Reduce axiom usage. (Revised by Gino Giotto, 30-Aug-2024)

Ref Expression
Assertion ab0orv x|φ=Vx|φ=

Proof

Step Hyp Ref Expression
1 nfv yφ
2 nf3 yφyφy¬φ
3 1 2 mpbi yφy¬φ
4 tbtru φφ
5 df-clab yx|φyxφ
6 sbv yxφφ
7 5 6 bitr2i φyx|φ
8 tru
9 vextru yx|
10 8 9 2th yx|
11 7 10 bibi12i φyx|φyx|
12 4 11 bitri φyx|φyx|
13 12 albii yφyyx|φyx|
14 dfcleq x|φ=x|yyx|φyx|
15 dfv2 V=x|
16 15 eqcomi x|=V
17 16 eqeq2i x|φ=x|x|φ=V
18 13 14 17 3bitr2i yφx|φ=V
19 equid y=y
20 19 nbn3 ¬φφ¬y=y
21 df-clab yx|¬x=xyx¬x=x
22 equid x=x
23 22 19 2th x=xy=y
24 23 notbii ¬x=x¬y=y
25 24 a1i x=y¬x=x¬y=y
26 25 sbievw yx¬x=x¬y=y
27 21 26 bitr2i ¬y=yyx|¬x=x
28 7 27 bibi12i φ¬y=yyx|φyx|¬x=x
29 20 28 bitri ¬φyx|φyx|¬x=x
30 29 albii y¬φyyx|φyx|¬x=x
31 dfcleq x|φ=x|¬x=xyyx|φyx|¬x=x
32 dfnul2 =x|¬x=x
33 32 eqcomi x|¬x=x=
34 33 eqeq2i x|φ=x|¬x=xx|φ=
35 30 31 34 3bitr2i y¬φx|φ=
36 18 35 orbi12i yφy¬φx|φ=Vx|φ=
37 3 36 mpbi x|φ=Vx|φ=