Metamath Proof Explorer


Theorem ablpncan3

Description: A cancellation law for Abelian groups. (Contributed by NM, 23-Mar-2015)

Ref Expression
Hypotheses ablsubadd.b B=BaseG
ablsubadd.p +˙=+G
ablsubadd.m -˙=-G
Assertion ablpncan3 GAbelXBYBX+˙Y-˙X=Y

Proof

Step Hyp Ref Expression
1 ablsubadd.b B=BaseG
2 ablsubadd.p +˙=+G
3 ablsubadd.m -˙=-G
4 simpl GAbelXBYBGAbel
5 simprl GAbelXBYBXB
6 ablgrp GAbelGGrp
7 6 adantr GAbelXBYBGGrp
8 simprr GAbelXBYBYB
9 1 3 grpsubcl GGrpYBXBY-˙XB
10 7 8 5 9 syl3anc GAbelXBYBY-˙XB
11 1 2 ablcom GAbelXBY-˙XBX+˙Y-˙X=Y-˙X+˙X
12 4 5 10 11 syl3anc GAbelXBYBX+˙Y-˙X=Y-˙X+˙X
13 1 2 3 grpnpcan GGrpYBXBY-˙X+˙X=Y
14 7 8 5 13 syl3anc GAbelXBYBY-˙X+˙X=Y
15 12 14 eqtrd GAbelXBYBX+˙Y-˙X=Y