Metamath Proof Explorer


Theorem ablsubadd23

Description: Commutative/associative law for addition and subtraction in abelian groups. ( subadd23d analog.) (Contributed by AV, 2-Mar-2025)

Ref Expression
Hypotheses ablsubadd.b B=BaseG
ablsubadd.p +˙=+G
ablsubadd.m -˙=-G
Assertion ablsubadd23 GAbelXBYBZBX-˙Y+˙Z=X+˙Z-˙Y

Proof

Step Hyp Ref Expression
1 ablsubadd.b B=BaseG
2 ablsubadd.p +˙=+G
3 ablsubadd.m -˙=-G
4 3ancomb XBYBZBXBZBYB
5 4 biimpi XBYBZBXBZBYB
6 1 2 3 abladdsub GAbelXBZBYBX+˙Z-˙Y=X-˙Y+˙Z
7 5 6 sylan2 GAbelXBYBZBX+˙Z-˙Y=X-˙Y+˙Z
8 ablgrp GAbelGGrp
9 1 2 3 grpaddsubass GGrpXBZBYBX+˙Z-˙Y=X+˙Z-˙Y
10 8 5 9 syl2an GAbelXBYBZBX+˙Z-˙Y=X+˙Z-˙Y
11 7 10 eqtr3d GAbelXBYBZBX-˙Y+˙Z=X+˙Z-˙Y