Metamath Proof Explorer


Theorem abs2sqle

Description: The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007)

Ref Expression
Assertion abs2sqle A B A B A 2 B 2

Proof

Step Hyp Ref Expression
1 fveq2 A = if A A 0 A = if A A 0
2 1 breq1d A = if A A 0 A B if A A 0 B
3 1 oveq1d A = if A A 0 A 2 = if A A 0 2
4 3 breq1d A = if A A 0 A 2 B 2 if A A 0 2 B 2
5 2 4 bibi12d A = if A A 0 A B A 2 B 2 if A A 0 B if A A 0 2 B 2
6 fveq2 B = if B B 0 B = if B B 0
7 6 breq2d B = if B B 0 if A A 0 B if A A 0 if B B 0
8 oveq1 B = if B B 0 B 2 = if B B 0 2
9 8 breq2d B = if B B 0 if A A 0 2 B 2 if A A 0 2 if B B 0 2
10 6 9 syl B = if B B 0 if A A 0 2 B 2 if A A 0 2 if B B 0 2
11 7 10 bibi12d B = if B B 0 if A A 0 B if A A 0 2 B 2 if A A 0 if B B 0 if A A 0 2 if B B 0 2
12 0cn 0
13 12 elimel if A A 0
14 12 elimel if B B 0
15 13 14 abs2sqlei if A A 0 if B B 0 if A A 0 2 if B B 0 2
16 5 11 15 dedth2h A B A B A 2 B 2