Metamath Proof Explorer


Theorem abscl

Description: Real closure of absolute value. (Contributed by NM, 3-Oct-1999)

Ref Expression
Assertion abscl AA

Proof

Step Hyp Ref Expression
1 absval AA=AA
2 cjmulrcl AAA
3 cjmulge0 A0AA
4 resqrtcl AA0AAAA
5 2 3 4 syl2anc AAA
6 1 5 eqeltrd AA