Metamath Proof Explorer


Theorem abscn2

Description: The absolute value function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014)

Ref Expression
Assertion abscn2 Ax+y+zzA<yzA<x

Proof

Step Hyp Ref Expression
1 absf abs:
2 ax-resscn
3 fss abs:abs:
4 1 2 3 mp2an abs:
5 abs2difabs zAzAzA
6 4 5 cn1lem Ax+y+zzA<yzA<x