Metamath Proof Explorer


Theorem cjcn2

Description: The complex conjugate function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014)

Ref Expression
Assertion cjcn2 Ax+y+zzA<yzA<x

Proof

Step Hyp Ref Expression
1 cjf *:
2 cjcl zz
3 cjcl AA
4 subcl zAzA
5 2 3 4 syl2an zAzA
6 5 abscld zAzA
7 cjsub zAzA=zA
8 7 fveq2d zAzA=zA
9 subcl zAzA
10 9 abscjd zAzA=zA
11 8 10 eqtr3d zAzA=zA
12 6 11 eqled zAzAzA
13 1 12 cn1lem Ax+y+zzA<yzA<x