Metamath Proof Explorer


Theorem absneg

Description: Absolute value of the opposite. (Contributed by NM, 27-Feb-2005)

Ref Expression
Assertion absneg AA=A

Proof

Step Hyp Ref Expression
1 cjneg AA=A
2 1 oveq2d AAA=AA
3 cjcl AA
4 mul2neg AAAA=AA
5 3 4 mpdan AAA=AA
6 2 5 eqtrd AAA=AA
7 6 fveq2d AAA=AA
8 negcl AA
9 absval AA=AA
10 8 9 syl AA=AA
11 absval AA=AA
12 7 10 11 3eqtr4d AA=A