Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
abssdv
Next ⟩
abssi
Metamath Proof Explorer
Ascii
Unicode
Theorem
abssdv
Description:
Deduction of abstraction subclass from implication.
(Contributed by
NM
, 20-Jan-2006)
Ref
Expression
Hypothesis
abssdv.1
⊢
φ
→
ψ
→
x
∈
A
Assertion
abssdv
⊢
φ
→
x
|
ψ
⊆
A
Proof
Step
Hyp
Ref
Expression
1
abssdv.1
⊢
φ
→
ψ
→
x
∈
A
2
1
alrimiv
⊢
φ
→
∀
x
ψ
→
x
∈
A
3
abss
⊢
x
|
ψ
⊆
A
↔
∀
x
ψ
→
x
∈
A
4
2
3
sylibr
⊢
φ
→
x
|
ψ
⊆
A