Metamath Proof Explorer


Theorem abv1

Description: The absolute value of one is one in a division ring. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abv0.a A=AbsValR
abv1.p 1˙=1R
Assertion abv1 RDivRingFAF1˙=1

Proof

Step Hyp Ref Expression
1 abv0.a A=AbsValR
2 abv1.p 1˙=1R
3 id FAFA
4 eqid 0R=0R
5 4 2 drngunz RDivRing1˙0R
6 1 2 4 abv1z FA1˙0RF1˙=1
7 3 5 6 syl2anr RDivRingFAF1˙=1