Metamath Proof Explorer


Theorem abveq0

Description: The value of an absolute value is zero iff the argument is zero. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a A=AbsValR
abvf.b B=BaseR
abveq0.z 0˙=0R
Assertion abveq0 FAXBFX=0X=0˙

Proof

Step Hyp Ref Expression
1 abvf.a A=AbsValR
2 abvf.b B=BaseR
3 abveq0.z 0˙=0R
4 1 abvrcl FARRing
5 eqid +R=+R
6 eqid R=R
7 1 2 5 6 3 isabv RRingFAF:B0+∞xBFx=0x=0˙yBFxRy=FxFyFx+RyFx+Fy
8 4 7 syl FAFAF:B0+∞xBFx=0x=0˙yBFxRy=FxFyFx+RyFx+Fy
9 8 ibi FAF:B0+∞xBFx=0x=0˙yBFxRy=FxFyFx+RyFx+Fy
10 simpl Fx=0x=0˙yBFxRy=FxFyFx+RyFx+FyFx=0x=0˙
11 10 ralimi xBFx=0x=0˙yBFxRy=FxFyFx+RyFx+FyxBFx=0x=0˙
12 9 11 simpl2im FAxBFx=0x=0˙
13 fveqeq2 x=XFx=0FX=0
14 eqeq1 x=Xx=0˙X=0˙
15 13 14 bibi12d x=XFx=0x=0˙FX=0X=0˙
16 15 rspccva xBFx=0x=0˙XBFX=0X=0˙
17 12 16 sylan FAXBFX=0X=0˙